340 research outputs found

    Zhat Ting Dere

    Get PDF
    A poem

    Nonadiabatic scattering of a quantum particle in an inhomogenous magnetic field

    Full text link
    We investigate the quantum effects, in particular the Landau-level quantization, in the scattering of a particle the nonadiabatic classical dynamics of which is governed by an adiabatic invariant. As a relevant example, we study the scattering of a drifting particle on a magnetic barrier in the quantum limit where the cyclotron energy is much larger than a broadening of the Landau levels induced by the nonadiabatic transitions. We find that, despite the level quantization, the exponential suppression exp(2πd/δ)\exp(-2\pi d/\delta) (barrier width dd, orbital shift per cyclotron revolution δ\delta) of the root-mean-square transverse displacement experienced by the particle after the scattering is the same in the quantum and the classical regime.Comment: 4 page

    The quest for hot gas in the halo of NGC 1511

    Full text link
    XMM-Newton observations of the starburst galaxy NGC 1511 reveal the presence of a previously unknown extended hot gaseous phase of its ISM, which partly extends out of the disk plane. The emission distribution is asymmetric, being brightest in the eastern half of the galaxy, where also radio continuum observations suggest the highest level of star formation. Spectral analysis of the integral 0.2-12 keV X-ray emission from NGC 1511 indicates a complex emission composition. A model comprising a power law plus thermal plasma component, both absorbed by foreground gas, cannot explain all details of the observed spectrum, requiring a third spectral component to be added. This component can be a second thermal plasma, but other spectral models can be fitted as well. Its X-ray properties characterize NGC 1511 as a starburst galaxy. The X-ray-to-infrared luminosity ratio is consistent with this result. Together with the X-ray data, XMM-Newton obtained UV images of NGC 1511, tracing massive stars heating the ambient gas, which is then seen in H\alpha emission. UV, H\alpha and near-infrared imagery suggest that NGC 1511 is disturbed, most likely by its two small companions, NGC 1511a and NGC 1511b.Comment: 7 pages, 7 figures, accepted for publication in A&

    Spatially-Correlated Microstructure and Superconductivity in Polycrystalline Boron-Doped Diamond

    Get PDF
    Scanning tunneling spectroscopies are performed below 100~mK on nano-crystalline boron-doped diamond films characterized by Transmission Electron Microscopy and transport measurements. We demonstrate a strong correlation between the local superconductivity strength and the granular structure of the films. The study of the spectral shape, amplitude and temperature dependence of the superconductivity gap enables us to differentiate intrinsically superconducting grains that follow the BCS model, from grains showing a different behavior involving the superconducting proximity effect

    Absence of boron aggregates in superconducting silicon confirmed by atom probe tomography

    Full text link
    Superconducting boron-doped silicon films prepared by gas immersion laser doping (GILD) technique are analyzed by atom probe tomography. The resulting three-dimensional chemical composition reveals that boron atoms are incorporated into crystalline silicon in the atomic percent concentration range, well above their solubility limit, without creating clusters or precipitates at the atomic scale. The boron spatial distribution is found to be compatible with local density of states measurements performed by scanning tunneling spectroscopy. These results, combined with the observations of very low impurity level and of a sharp two-dimensional interface between doped and undoped regions show, that the Si:B material obtained by GILD is a well-defined random substitutional alloy endowed with promising superconducting properties.Comment: 4 page

    The mysterious HI deficiency of NGC 3175

    Get PDF
    Australia Telescope Compact Array HI observations reveal the existence of 5.8x10^8 M_sun of HI gas in the central 7 kpc of the edge-on spiral galaxy NGC 3175. The detected HI and CO gas can explain why star formation, as traced by other emission processes, is going on in the inner part of its disk. On the other hand, the entire outer disk, beyond 3.5 kpc radius, shows no HI emission, has a very red colour and exhibits neither radio continuum nor H-alpha emission. This indicates that the outer part of NGC 3175 is quiescent, i.e. not forming stars at a measurable rate. Its HI deficiency and the small extent of the HI layer, which is confined to the boundaries of the optically visible disk, make NGC 3175 a peculiar spiral galaxy. No intergalactic HI gas in the NGC 3175 group was detected in our interferometric observations. Earlier Parkes telescope single dish HI observations put an upper limit on the amount of diffuse gas that might have been missed by the interferometer at 2x10^8 M_sun. On DSS plates no galaxy in the NGC 3175 group of galaxies (Garcia 1993) is close enough to it and none exhibits disturbances that could indicate a close interaction which might have led to the stripping of large parts of its HI gas. Thus, despite an extensive multi-wavelength investigation, the reason for the unusual absence of HI and star formation activity in the outer disk of NGC 3175 remains an intriguing mystery.Comment: 8 pages, 6 figures, uses aa.cls. Accepted for publication in Astronomy & Astrophysic

    Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers

    Full text link
    Scanning tunneling spectroscopies in the subKelvin temperature range were performed on superconducting Silicon epilayers doped with Boron in the atomic percent range. The resulting local differential conductance behaved as expected for a homogeneous superconductor, with an energy gap dispersion below +/- 10%. The spectral shape, the amplitude and temperature dependence of the superconductivity gap follow the BCS model, bringing further support to the hypothesis of a hole pairing mechanism mediated by phonons in the weak coupling limit.Comment: 4 pages, 3 figure

    An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance

    Get PDF
    (abbreviated) We have undertaken an X-ray survey of a far-infrared flux limited sample of seven nearby edge-on starburst galaxies. Here, we examine the two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent manner, taking account of the spatial distribution of the X-ray emission in choosing our spectral models. There is significant X-ray absorption in the disk of NGC 253. When this is accounted for we find that multi-temperature thermal plasma models with significant underlying soft X-ray absorption are more consistent with the imaging data than single-temperature models with highly subsolar abundances or models with minimal absorption and non-equilibrium thermal ionization conditions. Our models do not require absolute abundances that are inconsistent with solar values or unusually supersolar ratios of the alpha-burning elements with respect to Fe (as claimed previously). We conclude that with current data, the technique of measuring abundances in starburst galaxies via X-ray spectral modeling is highly uncertain. Based on the point-like nature of much of the X-ray emission in the PSPC hard-band image of NGC 253, we suggest that a significant fraction of the ``extended'' X-ray emission in the 3-10 keV band seen along the disk of the galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources in the disk, as opposed to purely diffuse, hot gas. This could explain the low Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal
    corecore